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Hyperbaric oxygen therapy might improve certain
pathophysiological findings in autism
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Summary Autism is a neurodevelopmental disorder currently affecting as many as 1 out of 166 children in the United
States. Numerous studies of autistic individuals have revealed evidence of cerebral hypoperfusion, neuroinflammation
and gastrointestinal inflammation, immune dysregulation, oxidative stress, relative mitochondrial dysfunction,
neurotransmitter abnormalities, impaired detoxification of toxins, dysbiosis, and impaired production of porphyrins.
Many of these findings have been correlated with core autistic symptoms. For example, cerebral hypoperfusion in
autistic children has been correlated with repetitive, self-stimulatory and stereotypical behaviors, and impairments in
communication, sensory perception, and social interaction. Hyperbaric oxygen therapy (HBOT) might be able to
improve each of these problems in autistic individuals. Specifically, HBOT has been used with clinical success in several
cerebral hypoperfusion conditions and can compensate for decreased blood flow by increasing the oxygen content of
plasma and body tissues. HBOT has been reported to possess strong anti-inflammatory properties and has been shown
to improve immune function. There is evidence that oxidative stress can be reduced with HBOT through the
upregulation of antioxidant enzymes. HBOT can also increase the function and production of mitochondria and improve
neurotransmitter abnormalities. In addition, HBOT upregulates enzymes that can help with detoxification problems
specifically found in autistic children. Dysbiosis is common in autistic children and HBOT can improve this. Impaired
production of porphyrins in autistic children might affect the production of heme, and HBOT might help overcome the
effects of this problem. Finally, HBOT has been shown to mobilize stem cells from the bone marrow to the systemic
circulation. Recent studies in humans have shown that stem cells can enter the brain and form new neurons,
astrocytes, and microglia. It is expected that amelioration of these underlying pathophysiological problems through
the use of HBOT will lead to improvements in autistic symptoms. Several studies on the use of HBOT in autistic children
are currently underway and early results are promising.

�c 2006 Elsevier Ltd. All rights reserved.
0
d

u
c
c
L
S

306-9877/$ - see front matter �c 2006 Elsevier Ltd. All rights reserved.
oi:10.1016/j.mehy.2006.09.064

Abbreviations: HBOT, hyperbaric oxygen therapy; PDD, pervasive developmental disorder; SPECT, single photon emission comp-
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Table 1 Selected areas of cerebral hypoperfusion in
autism and clinical correlations

Area of cerebral
hypoperfusion

Clinical correlation

Thalamus Repetitive, self-stimulatory,
and unusual behaviors [13]

Temporal lobes Desire for sameness and social/
communication impairments
[15]

Temporal lobes and
amygdala

Impairments in processing
facial expressions/emotions
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Background

Autism is a neurodevelopmental disorder currently
affecting as many as 1 out of 166 children in the Uni-
ted States [1] and as many as 1 in 86 in certain areas
of England [2].Over 1.5million children andadults in
the United States alone are affectedwith some form
of autism [3]. Autism is characterized by impair-
ments in social interaction, difficultywith communi-
cation, and restrictive and repetitive behaviors [4].
Traditionally, autism has been considered a highly
genetic disorder, yet the identification of a specific
genetic cause has been elusive despite numerous
studies [5–7]. One recent study has demonstrated
that many children with autism typically have wors-
ening of core autistic clinical features with increas-
ing age [8].Moreover, young children diagnosedwith
Pervasive Developmental Disorder (PDD) tend to get
worse clinically over time, and almost all are diag-
nosed with autism at a later age [9]. According to
these two studies, improvements in core autistic
features are uncommon. Therefore, any treatment
that can improve autistic symptoms demands addi-
tional study and implementation.

Hypothesis

Recent analysis has furthered our understanding of
the underlying pathophysiology of autism that was
not apparent even several years ago. Novel clinical
findings in autism have lately been described, includ-
ing cerebral hypoperfusion, neuroinflammation and
gastrointestinal inflammation, immune dysregula-
tion, oxidative stress, relative mitochondrial dys-
function, neurotransmitter abnormalities, impaired
detoxification enzymes, dysbiosis, and impaired pro-
duction of porphyrins. Many of these findings have
been correlated with core autistic symptoms. Hyper-
baric oxygen therapy (HBOT) might be able to im-
prove each of these problems and has been shown
to mobilize stem cells from the bone marrow to the
systemic circulation. Recent human studies have
demonstrated that stem cells can enter the brain
and form new neurons, astrocytes, and microglia. It
is expected that amelioration of these underlying
pathophysiological problems through theuseofHBOT
will lead to improvements in autistic symptoms.
[24]
Fusiform gyrus Difficulty recognizing familiar

faces [25]
Wernicke’s and
Brodmann’s areas

Decreased language
development and auditory
processing problems [11,17]

Temporal and
frontal lobes

Decreased IQ [20]
Review of the pathophysiology of autism
and possible benefits of HBOT

Cerebral hypoperfusion in autism

Numerous independent single photon emission
computed tomography (SPECT) and positron emis-
sion tomography (PET) research studies have dem-
onstrated hypoperfusion to several areas of the
autistic brain, most notably the temporal lobes
[10–23]. In one study, this hypoperfusion typically
worsened as the age of the autistic child increased,
and become ‘‘quite profound’’ in older children
compared to younger [11]. The maximal decrease
in blood flow in autistic children compared to
control children was approximately 8% in another
study [18]. This cerebral hypoperfusion has been
correlated with many of the core clinical features
associated with autism (see Table 1). Repetitive,
self-stimulatory, and unusual behaviors including
resistance to changes in routine and environment
have been correlated with decreased blood flow
to the thalamus [13]. ‘‘Obsessive desire for same-
ness’’ and ‘‘impairments in communication and
social interaction’’ have been correlated with de-
creased blood flow to the temporal lobes [15].
Impairments in processing facial expressions and
emotions have been correlated with decreased
blood flow to the temporal lobes and amygdala
[24]. Diminished blood flow to the fusiform gyrus
has been correlated with difficulty in recognizing
familiar faces [25]. Decreased language develop-
ment [11] and auditory processing [17] have been
correlated with decreased blood flow to Wernicke’s
and Brodmann’s area. Finally, hypoperfusion of the
temporal and frontal lobes has been correlated with
decreased IQ in autistic individuals [20].

In addition, not only do autistic individuals have
decreased blood flow at baseline, but when autistic
children attend to a task, they often do not have a
compensatory increase in blood flow like typical
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children, and instead sometimes demonstrate de-
creased blood flow. Neurotypical children have an
increase in cerebral blood flow as measured by
functional magnetic resonance imaging (fMRI)
when performing a task that requires attention or
sensory input; autistic children typically lack this
increase in blood flow [26]. Control children also
have an increase in cerebral blood flow when lis-
tening to tones and generating sentences; whereas
autistic children typically have a decrease in cere-
bral blood flow [27]. Upon an auditory stimulation,
‘‘normal’’ children have a drop in the left middle
cerebral artery resistance index as measured by
transcranial doppler ultrasound (which means
blood flow increases); while autistic children have
an increase in resistance index, which causes blood
flow to decrease [28]. These findings might indi-
cate that the brain metabolic rate and function
are diminished in autistic children because blood
flow is tightly coupled with these two parameters
[29,30].

The cause of this cerebral hypoperfusion in
autistic individuals is unknown but might be due
to inflammation. One recent study on autopsy brain
samples from autistic individuals described accu-
mulation of perivascular macrophages and microg-
lia [31], which could be consistent with vasculitis.
This accumulation could cause stiffening of the
vessel wall and decrease the size of the lumen,
leading to decreased cerebral blood flow. Further-
more, elevated urinary levels of 8-isoprostane-F2a
have recently been described in some autistic indi-
viduals [32]. In some studies, this isoprostane ele-
vation has been shown to cause in vivo
vasoconstriction and increase the aggregation of
platelets [33]. A more recent study on autistic indi-
viduals also demonstrated increased urinary levels
of isoprostane F2a-VI (a marker of lipid peroxida-
tion), 2,3-dinor-thromboxane B2 (which reflects
platelet activation), and 6-keto-prostaglandin F1a
(a marker of endothelium activation) [34]. These
elevated markers indicate that some autistic chil-
dren have increased platelet aggregation, endothe-
lium activation, and vasoconstriction. This is
important because vasoconstriction can cause de-
creased blood flow to the brain, which could result
in relative hypoxia. Hypoxia has been shown to
activate brain microglia which in turn produce
inflammatory mediators, such as Tumor Necrosis
Factor-a (TNF-a) and Interleukin-1 (IL-1) [35].
Treatment of this inflammation might help restore
normal blood flow. In fact, many inflammatory con-
ditions such as lupus, Kawasaki disease, Behçet’s
disease, encephalitis, and Sjögren’s syndrome are
characterized by cerebral hypoperfusion [36–42],
and treatment with anti-inflammatory medication
can restore normal cerebral blood flow in some of
these conditions [43,44].

Unfortunately, a viscous cycle could ensue as in-
creased inflammation could lead to increased cere-
bral hypoperfusion (see Fig. 1). This, in turn, can
lead to hypoxia. Hypoxia causes an increase in hy-
poxia-inducible factor-1a (HIF-1a), which in turn
causes an increase in inflammation, including red-
ness and swelling of tissues, and the attraction of
lymphocytes [45]. HIF-1a is essential for inflamma-
tion mediated by myeloid cells [46]. In fact, in one
study, rats that were null for HIF-1a demonstrated
almost complete inhibition of the inflammatory re-
sponse [47]. HIF-1a is also responsible for angio-
genesis that is secondary to hypoxia [47,48]. In
addition, HIF-1a induces Vascular Endothelial
Growth Factor (VEGF), which increases the perme-
ability of blood vessels [45] and causes tissue
edema. This edema can lead to increased intersti-
tial space between cells [49] and cause an increase
in the distance that oxygen must diffuse from the
blood vessel to the cells and can thus lead to cellu-
lar hypoxia [50]. Chronic inflammation is commonly
associated with the infiltration of polymorphonu-
clear neutrophils (PMN’s) and other immune cells,
along with the cytokines that are released by these
cells. This causes an increase in local oxygen usage
due to the resultant oxygen requirements of these
new cells. Yet, at the same time, inflammation
causes reduced oxygen extraction by normal cells
[51]. For instance, in one study, elevated markers
of inflammation (including IL-6, TNF receptors 1
and 2, and high-sensitivity C-reactive protein) were
correlated with decreased maximum oxygen up-
take at peak exercise (VO2max) in patients with
known or suspected coronary artery disease [52].
Therefore, inflammation prevents maximal uptake
of oxygen by cells. Inflammation also increases oxi-
dative stress and can cause neutrophils to become
more adherent and attach to vessel walls [53]. This
infiltration and increased adherence of inflamma-
tory cells can contribute to brain injury by decreas-
ing microvascular blood flow, causing thrombosis,
and increasing the production of free radicals [54].
HBOT and cerebral hypoperfusion

HBOT can overcome the effects of cerebral hypop-
erfusion (see Table 2) by providing more oxygen to
the brain [55,56], and by causing angiogenesis of
new blood vessels over time by increasing VEGF
levels [57]. Furthermore, if cerebral hypoperfusion
is causing hypoxia that is also driving inflammation
through the induction of HIF-1a, the oxygen
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Figure 1 Proposed cycle of inflammation and resultant cerebral hypoperfusion in autism.
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delivered by HBOT can improve hypoxia, and thus
downregulate HIF-1a. Hypoxia can lead to apopto-
sis [58] regulated by HIF-1a [59]. HBOT has been
Table 2 Proposed mechanisms of inflammatory-induced c

Autism inflammatory finding Mechanism of hypope

› 8-isoprostane-F2a [32] and
isoprostane F2a-VI [34]

Vasoconstriction caus
blood flow which lead
delivery of oxygen [3

› 2,3-dinor-thromboxane
B2 [34]

Increased aggregation

› 6-keto-prostaglandin
F1a [34]

Endothelial activation

Cerebral infiltration of
perivascular macrophages
and microglia [31]

Vasculitis-like conditi

Cerebral infiltration of
perivascular macrophages
and microglia [31]

Increased oxygen usa
inflammatory cells an
extraction by normal

a In this study, platelet aggregation decreased slightly after one
HBOT.
shown to inhibit the expression of HIF-1a and its
target genes [60], and prevent apoptosis [61] by
inhibiting proapototic BNIP-1 [60] and by increasing
erebral hypoperfusion found in autism and HBOT effects

rfusion HBOT effect

es decreased
s to decreased
3]

Increases the amount of oxygen
in plasma and thus increases
delivery of oxygen to cells
[55,56]

of platelets No effect on platelet
aggregation [77]a

Decreases aggregation of PMN’s
to endothelium [66]

on Decreases PMN infiltration in
injured areas [54]

ge by
d reduced oxygen
cells [51]

Increases oxygen in plasma and
thus increases delivery of
oxygen to cells [55,56]

hyperbaric treatment, but returned to normal with repeated



Table 3 Evidence of neuroinflammation in autism

A. Elevated markers of neuroinflammation
Activation of microglia and astroglia [31]
Brain IL-6 [31]
Brain MCP-1 [31]
Brian GFAP [79]
CSF GFAP [81]

B. Elevated serum antibodies to brain proteins
Neuron-axon filament protein [82]
GFAP [82]
Brain epithelial cells and nuclei [84,83]
Myelin basic protein [85,87]
Myelin associated glycoprotein [85]
Ganglioside [85]
Sulfatide [85]
Chondroitin sulfate [85]
Myelin oligodendrocyte glycoprotein [85]
a,h-crystallin [85]
Neurofilament proteins [85]
Tubulin [85]
Cerebellar Purkinje cells [86]
Caudate nucleus [89]
Cerebral cortex [89]
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the expression of Bcl-2, an inhibitor of apoptosis
[62]. Interestingly, Bcl-2 levels in the brains of
some autistic people are diminished [63].

Since the cerebral hypoperfusion in autism is
likely secondary to inflammation, HBOT might be
especially helpful because it possesses strong
anti-inflammatory properties as will be discussed
in detail shortly. Inflammation is often accompa-
nied by PMN infiltration which can decrease micro-
vascular blood flow; however, HBOT has been
shown to decrease the infiltration of PMN’s after
an ischemic injury to the brain [54,64,65]. In addi-
tion, HBOT inhibits neutrophil attachment to blood
vessel walls [66], reduces leukocyte adherence
[67], and increases the distance that oxygen can
travel in the interstitial space [68]. HBOT has also
been used in cases of vasculitis with good results
[69], and with success in disorders characterized
by cerebral hypoperfusion including fetal alcohol
syndrome [70], cerebral palsy [71,72], autism
[73], chronic brain injury [74], closed head injury
[75], and stroke [76].
BDNF [90]
Neuroinflammation in autism

Several recent studies have revealed that children
with autism have evidence of neuroinflammation
[31,78,79]. Marked activation of microglia and
astroglia with elevations in IL-6 and macrophage
chemoattractant protein-1 (MCP-1) were found in
autistic brain samples upon autopsy, along with in-
creased proinflammatory cytokines in the cerebral
spinal fluid (CSF) of living autistic children [31].
Activated microglia have been shown to release
inflammatory mediators such as IL-1 and TNF-a,
and have been implicated as the primary cell type
that controls inflammation-mediated neuronal in-
jury [35]. A cell-mediated immune response to
brain tissue in autistic individuals has also been de-
scribed [80]. In addition, some autistic children
have increased glial fibrillary acidic protein (GFAP)
in brain samples [79] and the CSF [81], which is also
indicative of inflammation and reactive injury.
Autoantibodies to neuron-axon filament protein
and GFAP were also increased in the plasma of
autistic individuals compared to control individuals
[82]. Autistic children make more serum autoanti-
bodies to the brain [83], including IgG and IgM
autoantibodies to brain epithelial cells and nuclei
when compared to typical children [84]. Elevated
serum autoantibodies to many neuron-specific anti-
gens and cross-reactive peptides have been found
in autistic children [85], including antibodies direc-
ted against cerebellar Purkinje cells [86], and other
neural proteins (see Table 3) such as myelin basic
protein [85,87,88]. Furthermore, 49% of autistic
children in one study created serum antibodies
against the caudate nucleus, and 18% produced ser-
um antibodies to the cerebral cortex [89]. Another
recent study demonstrated that autistic children,
when compared to control children, developed ser-
um autoantibodies to brain derived neurotrophic
factor (BDNF) and had higher levels of serum BDNF.
This is important because an elevation of BDNF pre-
dicts abnormalities in intellect and social develop-
ment [90]. Finally, maternal neuronal antibodies
might play a role in the development of autism in
some children [91].
Gastrointestinal inflammation in autism

In addition, some patients with autism have
chronic ileocolonic lymphoid nodular hyperplasia
(LNH) and enterocolitis characterized by mucosal
inflammation of the colon, stomach, and small
intestine [92–94]. These findings might represent
a ‘‘new variant inflammatory bowel disease’’
[93], and have been described as a ‘‘panenteric
IBD-like disease’’ [95]. As many as 90% of autistic
children with gastrointestinal symptoms have
evidence of ileal LNH, with 68% having moderate
to severe ileal LNH [92]. In one study, the gastroin-
testinal mucosa was shown to have increased
lymphocytic infiltration and density, crypt cell
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proliferation, and epithelial IgG deposits mimicking
an autoimmune lesion [96]. Another study demon-
strated that the gastrointestinal mucosa in autistic
individuals had evidence of increased lymphocytes
and proinflammatory cytokines including TNF-a and
Interferon-c (IFN-c), and less of the anti-inflamma-
tory cytokine IL-10, which is counter-regulatory
[97]. Some autistic children also had evidence of
an eosinophilic infiltrate of the gastrointestinal
mucosa [98]. Autistic children typically make sig-
nificantly more serum antibodies against gliadin
and casein peptides resulting in autoimmune reac-
tions [99]. More than 25% of autistic individuals
make serum IgG, IgM, and IgA antibodies against
gliadin, which can cross-react with cerebellar pep-
tides [86]. Furthermore, when compared to typical
children, autistic children produce more proinflam-
matory cytokines, including TNF-a, IL-1b, and IL-6
[100]. One study has shown that the genetic loci
for autism have a propensity to cluster with recog-
nized loci for inflammatory diseases [101].

Interestingly, children on a gluten and/or casein
free diet produced less TNF-a in the colonic muco-
sa [97], and had less evidence of eosinophilic infil-
tration of the mucosa [98]. In addition, the use of
anti-inflammatory treatments might improve autis-
tic symptomology [102]. In fact, treatment with
corticosteroids of one child who developed an
autoimmune lymphoproliferative syndrome and
subsequent autism led to objective improvements
in speech and developmental milestones [103]. In
another child with PDD, whose behavior and lan-
guage regressed at 22 months of age, treatment
with corticosteroids ameliorated abnormal behav-
iors such as hyperactivity, tantrums, impaired so-
cial interaction, echolalia, and stereotypies [104].
HBOT and inflammation

HBOT has potent anti-inflammatory tissue effects
[57] as revealed by several recent animal studies
[105,106], with equivalence to diclofenac 20 mg/
kg noted in one study [107]. HBOT has been shown
to attenuate the production of proinflammatory
cytokines including TNF-a [108–111], IL-1
[108,112], IL-1b [110,111], and IL-6 [108], and in-
crease the production of anti-inflammatory IL-10
[113]. HBOT has also been shown to reduce neuro-
inflammation in a rat model after traumatic brain
injury [65]. HBOT also reduced both inflammation
and pain in an animal model of inflammatory pain
[114], decreased the symptoms of advanced arthri-
tis in rats [115], and attenuated the inflammatory
response in the peritoneal cavity caused by in-
jected meconium [116]. HBOT has been used in ani-
mal studies to improve colitis [105,117–119], and
has been used in humans to achieve remission of
Crohn’s disease [120–124] and ulcerative colitis
[125,126] not responding to conventional medica-
tions, including corticosteroids. Interestingly, in
some studies, the decrease in inflammation with
HBOT appeared to be caused by the increased pres-
sure, not necessarily by the increased oxygen ten-
sion. In one animal study, hyperbaric pressure
without additional oxygen was shown to decrease
TNF-a levels [127]. In another human study, HBOT
at 2 atmosphere (atm) and 100% oxygen, and
hyperbaric pressure at 2 atm and 10.5% oxygen
(thus supplying 21% oxygen, equal to room air oxy-
gen) both showed anti-inflammatory activity by
inhibiting IFN-c release, whereas 100% oxygen at
room air pressure (1 atm) actually increased IFN-c
release [128].

The anti-inflammatory effect of HBOT might oc-
cur through the relief of hypoxia and the down-reg-
ulation of HIF-1a [47,60]. HBOT also decreases
Prostaglandin E2 production [112] which decreases
inflammation because prostglandins increase
inflammation, pain, and edema [57]. In one study,
HBOT decreased cyclooxygenase-2 (COX-2) enzyme
expression after transient cerebral ischemia [129].
The COX-2 enzyme is responsible for increased
prostaglandin production, leading to increased
inflammation. Blockade of the COX-2 enzyme has
been shown to decrease inflammation and cytokine
levels including IL-6 [130]. For these reasons, HBOT
might help ameliorate the inflammation found in
autism (see Table 4).
Immune function in autism

There is mounting evidence of immune dysregula-
tion in autistic individuals (see Table 5), and new
research is revealing the link between the immune
system and the nervous system [131]. An increased
number of autoimmune diseases exist in autistic
families compared to control families [132,133]
with as much as a 6–8 fold increased incidence
[134]. Some researchers believe that autistic chil-
dren might have ‘‘an underlying autoimmune disor-
der’’ [135] and that a ‘‘genetic relationship’’ exists
between autism and immune dysregulation [101].
Two early studies revealed that 38% of autistic chil-
dren had no detectible Rubella titers despite vacci-
nation [136], and 60% produced abnormal serum
antibodies to measles hemagglutinin protein when
compared to control children [87]. Autistic individ-
uals also make more serum antibodies to Heat



Table 4 Effects of HBOT on inflammatory markers and inflammation in autism

Marker Classification Autism finding HBOT effect

TNF-a Inflammatory › [100,97] fl [111,108,110,109], [127]a

IL-1b Inflammatory › [100] fl [111,110]
IL-6 Inflammatory › [100,31] fl [108]
IL-10 Anti-inflammatory fl [97] › [113]
IFN-c Inflammatory › [97] fl [128]b

Neuroinflammation › [31,78,79] fl [65]
Gastrointestinal inflammation › [92–94] fl [120,125]

a Hyperbaric pressure without additional oxygen decreased TNF-a.
b Hyperbaric pressure without additional oxygen also decreased IFN-c.

1214 Rossignol
Shock Protein-90 (HSP-90) [137], which could cause
HSP-90 levels to be lower. HSP-90 is a signal trans-
ducer which regulates development and cell differ-
entiation. In one study, decreased levels of HSP-90
allowed natural genetic abnormalities hidden in
fruit fly populations to suddenly appear [138]. At-
tempts to improve the underlying immune defi-
ciency in autistic individuals with intravenous
Table 5 Evidence of immunological abnormalities in
autism

A. Non-neuronal serum antibodies produced in
autistic individuals
HSP-90 [137]
Gliadin [99]
Casein [99]
Milk butyrophilin [85]
Chlamydia pneumoniae [85]
Streptococcal M protein [85]
Measles hemagglutinin protein [87]

B. Cellular, immunoglobulin, and cytokine
abnormalities
› Serum IgG2 and IgG4 [135]
fl Responsiveness of lymphocytes [155]
fl Natural killer cells [156]
fl Number of total CD4+ cells [143,142]
fl Number of T-helper cells (CD4+CD8�) [143]
› Number of suppressor T-cells (CD4�CD8+) [143]
Imbalance of CD4+and CD8+ cells [153]
› IFN-c [149]
› Markers of cell-mediated immunity (urinary
neopterin and biopterin) [152]

› IL-4 [154]
› IL-5 [154]
› IL-12 [149]
› IL-13 [154]
fl IL-10 [97]
› Serum IgE [139,148]
fl Serum IgA [139]
immune globulin have shown promising results
[139–141].

In addition, several studies have reported abnor-
malities in T-lymphocytes, including a decreased
number of CD4+ cells [142] in approximately 35%
of autistic individuals [139]. This has led to an al-
tered ratio of CD4/CD8 cells with a reduced num-
ber of T-helper cells (CD4+CD8�) and an increased
number of suppressor T-cells (CD4�CD8+) in some
autistic individuals [143]. One study demonstrated
that treatment with naltrexone increased the num-
ber of T-helper inducers and reduced the number
of T-cytotoxic suppressors, resulting in a normali-
zation of the CD4/CD8 ratio and improvement of
symptoms in over half of the autistic children stud-
ied [144]. CD4+ cells are divided into Th1 and Th2
subsets. Th1 cells produce IL-2 and IFN-c and are
involved in T-cell proliferation, activation of mac-
rophages, and cell-mediated immunity including
phagocytosis of intracellular pathogens like
viruses. Th2 cells are part of the adaptive immune
system and produce IL-4, IL-5, IL-6, IL-10, and IL-
13. IL-4 is involved in the B-cell production of
IgE. IL-5 stimulates the production of eosinophils,
and IL-6 is involved in the production of immuno-
globulins. IL-1 and IL-6 are proinflammatory cyto-
kines, and IL-10 inhibits Th1 cytokine production
and thus down-regulates the inflammatory re-
sponse [145]. Skewing toward Th2 is often seen in
allergic responses [146]. Interestingly, a history of
allergies in the mother during pregnancy led to a
greater than 2-fold elevated risk of autism [147],
and children with autism tend to have more food
allergies than control children [148].

Some earlier studies demonstrated activation of
the Th1 system in autistic children with increased
production of IL-12 and interferon when compared
to control children [149,150]. Autistic individuals
make more IFN-c and IL-1 receptor antagonist,
which can cause a Th1 skewing [151]. Autistic chil-
dren also have increased markers of cell-mediated
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immunity, a Th-1 function, including elevated uri-
nary neopterin and biopterin [152]. Finally, a cell-
mediated immune response to brain tissues in
autistic individuals has also been described [80].

More recent studies indicate that autistic chil-
dren exhibit a shift from Th1 to Th2 T-cell type
[135,140], as evidenced by an increased production
of IgE [139,148] and IL-4 producing CD4+ T-cells,
and lower levels of IL-2 producing CD4+ T-cells
compared to control children [153]. Furthermore,
about one-third of autistic children in one study
demonstrated IgG subclass deficiency not confined
to the 4 subclasses of IgG [139]. Approximately 5%
of autistic individuals have IgA deficiency, which is
normally present in 1 in 700–1000 people, and
about 30-40% have low serum IgA levels [139]. In
spite of these deficiencies, a new study suggests
that autism is characterized by a heightened im-
mune system. This is evidenced by an increased
activation of both the Th1 and Th2 arms with Th2
predominance as indicated by increased IL-4, IL-5
and IL-13 when compared to control individuals,
without a compensatory increase in IL-10 [154].

Shifting from a Th1 to a Th2 T-cell type might
enhance susceptibility to chronic viral infections
in some autistic individuals [135]. In fact, de-
pressed responsiveness of lymphocytes was found
in one study on autistic children [155], and another
study demonstrated a 40% decrease in the number
of natural killer cells when compared to control
children [156]. Therefore, autistic individuals
might have ‘‘enhanced susceptibility to infections
resulting in chronic viral infections’’ [135].
Table 6 Effects of HBOT on immune dysregulation
in autism

Marker Autism finding HBOT effect

HSP-90 fl? (due to
increased
antibodies to
HSP-90) [137]

› [168]

Serum IgA fl [139] › [165]
Serum IgE › [148,139] fl [164]
Lymphocytic activity fl [155] › [166]
T-helper cells fl [143] › [165]
HBOT and immune function

HBOT might be useful in some autoimmune dis-
eases [157], and has shown promise in rheumatic
diseases, including lupus and scleroderma [158],
and rheumatoid arthritis [159]. HBOT has been
used in animal models to completely suppress auto-
immune encephalomyelitis by blocking mononu-
clear infiltration and demyelination of the CNS
[160], and acted as an immunosuppressive agent
to delay skin allograft rejection [161]. HBOT has
been shown to suppress immune responses such
as proteinuria, facial erythema, and lymphadenop-
athy in an autoimmune mouse model [162]. In addi-
tion, one animal study showed increased survival
and decreased proteinuria, anti-dsDNA antibody ti-
ters, and immune-complex deposition in lupus-
prone autoimmune mice treated with HBOT [163].
HBOT improved symptoms in patients with atopic
dermatitis and also decreased IgE immunoglobulin
and complement levels [164]. In patients with mul-
tiple sclerosis, HBOT produced a significant in-
crease in total and helper T-lymphocyte numbers
and serum IgA levels [165]. Two other studies dem-
onstrated an increase in lymphocyte count, with
variable subset population increases depending on
which organ (spleen, thymus, or blood) was exam-
ined and how much oxygen was given with HBOT
[166,167]. HBOT has also been shown to increase
IL-10, the anti-inflammatory interleukin [113],
and induce the production of HSP-90 [168]. Inter-
estingly, some of the immunomodulatory effects
of HBOT might be due to the increased pressure,
not necessarily the increased oxygen tension
[169]. Even low hyperbaric pressures, without addi-
tional oxygen, can affect the immune system. One
study demonstrated that hyperbaric pressure at
just 20 mmHg (approximately 1.03 atm) can have
an effect on the immune system [127]. Based upon
these reasons, HBOT might help improve the im-
mune dysregulation found in autistic individuals
(see Table 6).
Oxidative stress in autism

Autistic children have evidence of increased oxida-
tive stress including lower serum glutathione levels
[170,171]. Some autistic children have increased
red blood cell nitric oxide, which is a known free
radical and toxic to the brain [172]. Of note, HIF-
1a increases the production of nitric oxide [45].
Lower serum antioxidant enzyme, antioxidant
nutrient, and glutathione levels, as well as higher
pro-oxidants have been found in multiple studies
of autistic children [173]. Autistic children have
evidence of increased lipid peroxidation [34,174],
including increased malondialdehyde which is a
marker of oxidative stress and lipid peroxidation
[175]. Decreased activities of certain antioxidant
enzymes have also been described in autistic indi-
viduals including superoxide dismutase (SOD)
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[176], glutathione peroxidase [176], and catalase
[174]. Some autistic children also have decreased
activity of paraoxonase, an antioxidant enzyme
that prevents lipid oxidation and also detoxifies
organophosphates in humans [177]. The gene for
Heat Shock Protein 70 (HSP-70), which protects
against oxidative stress, was downregulated in mul-
tiple cases of autism [178]. Antioxidants such as
ceruloplasmin [175] and zinc [179] tend to be lower
in autistic patients, and the ratio of copper to zinc
is abnormal in many autistic children [180]. Fur-
thermore, in one study, treatment with antioxi-
dants was shown to raise the levels of reduced
glutathione in the serum of autistic children and
appeared to improve symptoms [170]. In another
study, the use of antioxidants improved behavior
in some autistic children [181].
HBOT and oxidative stress

Concerns have been previously raised that HBOT
might increase oxidative stress through the produc-
tion of reactive oxygen species [182]. This is a rel-
evant concern because of the increased oxidative
stress just described in autistic children. However,
oxidative stress from HBOT appears to be less of a
concern at pressures under 2.0 atm [183] which are
often used clinically. Oxidative stress is caused by
an imbalance of oxidants and antioxidants. With
long-term and repeated administration, HBOT be-
low 2.0 atm can actually decrease oxidative stress
[184–186] by reducing lipid peroxidation [187],
and increasing the activity of antioxidant enzymes
including SOD [185,188], glutathione peroxidase
[118], catalase [189], paraoxonase [190], and
heme-oxygenase-1 [191–193]. HBOT has also been
shown to increase HSP-70, which protects against
oxidative stress [194,195]. One recent animal study
Table 7 Effects of HBOT on measures of oxidative stress

Measure Classification

Glutathione peroxidase Antioxidant enzyme
Superoxide dismutase Antioxidant enzyme
Heme-oxygenase 1 Antioxidant enzyme
Catalase Antioxidant enzyme
Paraoxonase Antioxidant enzyme; organophosp
HSP-70 Cellular protection against oxidat
Malondialdehyde Marker of oxidative stress and lipi
Ceruloplasmin Antioxidant
Glutathione Antioxidant
Zinc Antioxidant
Copper Metal
has demonstrated that HBOT can suppress oxida-
tive stress in brain tissues after a stroke [196].
HBOT also increases zinc, decreases copper [185],
and increases ceruloplasmin levels [197]. Thus,
HBOT might help improve the oxidative stress
found in some autistic individuals (see Table 7).
Mitochondrial dysfunction in autism

Lombard hypothesized that autism might be caused
by mitochondrial dysfunction [199]. Several recent
case reports supporting this concept have been
published including two autistic children with
hypotonia, lactic acidosis and abnormal mitochon-
drial enzyme assays on muscle biopsy [200], an
autistic child with developmental regression and
mitochondrial dysfunction [201], and an autistic
child with mitochondrial dysfunction [202]. A lar-
ger case series of 12 children with hypotonia, epi-
lepsy, and autism also found mitochondrial
dysfunction [203]. Another study on 100 children
with autism suggested mild mitochondrial dysfunc-
tion as evidenced by reduced carnitine and pyru-
vate levels and increased ammonia and alanine
levels [204]. Further research reveals that mito-
chondrial point mutations might be the cause of
autism in some people [205]. An association be-
tween autism and the mitochondrial aspartate/glu-
tamate carrier SLC25A12 gene polymorphism was
recently described [206] and confirmed [207]. A
mitochondrial A3243G mutation has also been asso-
ciated with autism [208], and both autosomal
recessive and maternally inherited mitochondrial
defects can cause autism [209]. Some of the more
common blood abnormalities associated with mito-
chondrial dysfunction include elevated aspartate
aminotransferase, creatine kinase, and fasting lac-
tic acid. In one study of 120 autistic children, 7.2%
in autism

Autism finding HBOT effect

fl [176] › [118]
fl [176] › [118,188,185]
? › [191–193]
fl [174] › [189]

hate detoxification fl [177,198] › [190]
ive stress fl [178] › [194,195]
d peroxidation › [175] fl [118,185]

fl [175] › [197]
fl [170] › [185]
fl [179] › [185]
› [180] fl [185]
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had a ‘‘definite mitochondrial respiratory chain
disorder’’, and plasma lactate levels were elevated
in 20% of the children [210]. In another study of 159
autistic children, compared to 94 control children,
autistic children had higher aspartate aminotrans-
ferase levels (p = 0.00005), and 47% had elevated
creatine kinase levels, which might be consistent
with relative mitochondrial dysfunction [201]. Re-
cently, mitochondrial abnormalities were discov-
ered in a mouse model of Rett Syndrome [211], a
disorder classified as a PDD.
HBOT and mitochondrial dysfunction

Hypoxia can impair mitochondrial function [212].
Since only approximately 0.3% of inhaled oxygen
is ultimately delivered to the mitochondria [213],
increasing the oxygen delivery to dysfunctional
mitochondria by HBOT might aid in improving func-
tion [214,215]. In a mouse model with an intrinsic
impairment of mitochondrial complex IV, HBOT at
2 atm ‘‘significantly ameliorate[d] mitochondrial
dysfunction’’ and delayed the onset of motor neu-
ron disease when compared to control mice [215].
In animals studies, HBOT increased the amount of
work done by mitochondria [216], improved mito-
chondrial function after brain injury [214], and
was shown to ‘‘protect mitochondria from deterio-
ration’’ when compared to normal oxygen and
pressure [217]. HBOT also has been shown to in-
crease sperm motility by augmenting mitochondrial
oxidative phosphorylation in fructolysis-inhibited
sperm cells [218]. HBOT also prevented apoptosis
and improved neurological recovery after cerebral
ischemia by opening mitochondrial ATP-sensitive
potassium channels [61]. Finally, HBOT has re-
cently been shown to activate mitochondrial DNA
transcription and replication, and increase the bio-
genesis of mitochondria in the brains of animals
[219]. For these reasons, HBOT might improve the
relative mitochondrial dysfunction found in some
autistic individuals.
Neurotransmitter abnormalities in
autism

Early childhood is typified by an increased produc-
tion of serotonin when compared to adulthood;
however, one study showed that autistic children
synthesized less serotonin during childhood when
compared to control children [220]. Another study
demonstrated lower levels of serotonin in both
autistic children and their mothers [221]. Plasma
levels of tryptophan, which is the precursor to
serotonin, are lower in autistic children compared
to control children, and are suggestive of a seroto-
nergic abnormality [222]. In addition, tryptophan
uptake by brain cells as seen on PET scan was less
in autistic children compared to control children
[220], and tryptophan depletion can cause a signif-
icant increase in autistic behaviors such as ‘‘whirl-
ing, flapping, pacing, banging and hitting self,
rocking, and toe walking’’ [223]. Antibodies against
cerebral serotonin receptors, which preclude the
binding of serotonin, are more common in autistic
individuals when compared to control individuals
[224,225]. Selective serotonin reuptake inhibitors
(SSRI’s) have been shown to be beneficial for obses-
sive and repetitive behaviors [226]. In some stud-
ies, SSRI’s including fluoxetine [227], fluvoxamine
[226], and escitalopram [228] have shown benefit
for autism.

In addition, some autistic children have evi-
dence of dopamine overactivity, including higher
CSF levels of homovanillic acid, the main metabo-
lite of dopamine [229]. Treatment of autistic chil-
dren with dopamine agonists has led to worsening
of aggression, hyperactivity, and stereotypies
[230]. Dopamine antagonists such as pimozide
[231] and bromocriptine [232] have shown
improvements in some autistic children.
HBOT and neurotransmitter
abnormalities

HBOT has also been shown to reduce the uptake of
serotonin by pulmonary endothelial cells [233,234],
and thus might function like an SSRI. In one study,
HBOT demonstrated ‘‘antidepressant-like activ-
ity’’ similar to that seen with some SSRI antide-
pressants like fluoxetine [235]. In another study
on patients with cluster headaches, HBOT im-
proved pain and was shown to act through seroto-
nergic pathways [236]. Furthermore, in an animal
model, HBOT was shown to decrease the release
of dopamine after cerebral injury [237]. In another
animal study, 90% oxygen at room air pressure
(1 atm) decreased extracellular dopamine levels
in the brain [238]. Therefore, HBOT might improve
the neurotransmitter imbalances found in some
autistic individuals.
Toxin exposure in autism and HBOT

Recent data has shown that organophosphate poi-
soning can cause atypical autism [239]. Paraoxonase
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is the enzyme responsible for organophosphate
detoxification in humans. In North America, autism
has beenassociatedwith variants in theparaoxonase
gene which can decrease the activity of this enzyme
by 50 percent [177]. This was recently confirmed in
another study that demonstrated reduced activity
of paraoxonase in some autistic children [198].

HBOT has been shown to increase the activity of
paraoxonase [190], and to prevent a decrease in
paraoxonase activity normally seen with a high
cholesterol diet [187]. Thus, HBOT might lead to
an improved ability to excrete organophosphates
in some autistic children by upregulating paraoxon-
ase activity.
Dysbiosis in autism

Significant alterations in intestinal flora, with in-
creased amounts of Clostridia bacteria [240–
242], and overgrowth of other abnormal bacteria
[241], exist in some autistic children when com-
pared to control children. In fact, one author has
hypothesized that Clostridia infection in the gut
might cause autistic-like symptoms [243]. Further-
more, treatment of these abnormal gut bacteria
with antibiotics has led to improvements of autistic
symptoms as measured by a clinical psychologist
blinded to the treatment status [244]. Some autis-
tic children also have overgrowth of yeast, viruses,
and parasites in the gut [245].
HBOT and dysbiosis

HBOT has been shown to decrease the amount of
abnormal bacteria in the gut and therefore can
function as an antibiotic [246]. In animal studies,
HBOT decreased intestinal bacterial colony counts
after bacteria overgrowth in the distal ileum asso-
ciated with bile duct ligation [247]. HBOT is also
bactericidal against many bacteria [248], including
Pseudomonas [249,250], Salmonella and Proteus
[249], Staphylococcus [251], Mycobacterium tuber-
culosis [248], and anaerobic bacteria such as
Clostridia [252]. In addition, the killing of bacteria
by phagocytic leukocytes is dependent upon oxygen
[253], and HBOT has been shown to improve leuko-
cyte phagocytic killing of Staphyloccus aureus in
animals [254]. HBOT has also been shown to inhibit
the growth of some yeast [255] and to possess viru-
cidal activity against some enveloped viruses [256].
HBOT also appears to have an antiviral effect
against HIV [257]. In an animal model, HBOT
improved symptoms in a virus-induced leukemia
compared to a control group [258]. HBOT can also
kill parasites, including Leishmania amazonensis
[259]. Thus HBOT might lead to an improvement
in the dysbiosis found in some autistic children by
reducing counts of abnormal pathogens.
Porphyrin production in autism and
HBOT

Children with autism might have impaired produc-
tion of some porphyrins [260] which are involved
in the synthesis of heme, which carries oxygen in
the body. Therefore, the ability to deliver oxygen
on hemoglobin could be compromised in some
autistic children [261], and HBOT might help over-
come this by increasing the amount of oxygen dis-
solved in plasma.
Stem cells and HBOT

Recently, HBOT at 2.0 atm was shown to mobilize
stem/progenitor cells from the bone marrow of hu-
mans into the systemic circulation. Elevations were
found in the number of colony-forming cells as
demonstrated by an increase in the number of
CD34+ cells by 8-fold after 20 HBOT sessions
[262]. Since stem cells are also produced in the
brain, this gives rise to the possibility of neuropoi-
esis [263], which might aid in reversing chronic
neurodegenerative disorders. Furthermore, in two
human case reports, female bone-marrow-trans-
plant patients received cells from male donors.
On autopsy of these females, staining for the male
Y-chromosome in their brains demonstrated that
male donor stem cells from the bone marrow had
crossed into the brain and formed new neurons,
astrocytes, and microglia [264,265].
Additional HBOT and future study
considerations

HBOT pressure considerations

Previous studies have shown improvements of
symptoms in children with autism and cerebral
palsy (CP) at hyperbaric pressures of 1.3 atm with
or without additional oxygen [72,73,266]. The use
of HBOT in children appears generally safe, even
at pressures up to 2.0 atm for 2 h per day for 40
sessions [267]. Many of the potential benefits of
HBOT as described above were found in studies at
higher hyperbaric pressures. Further study is neces-



Table 8 Summary of the proposed HBOT effects on
the pathophysiology found in autism

Problem Autism
finding

HBOT
effect

Cerebral perfusion fl ›
Neuroinflammation inflammation › fl
Gastrointestinal inflammation › fl
Immune dysregulation › fl
Oxidative stress › fl
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sary to determine if these benefits also hold true at
the lower hyperbaric pressures (1.3–1.5 atm) com-
monly being utilized for autistic individuals and to
establish the optimal hyperbaric pressure for aut-
ism and related disorders.

HBOT oxygen concentration considerations

As described above, in one study, the decrease in
inflammation with HBOT appeared to be caused
by the increased pressure, not necessarily by the
increased oxygen tension. In this human study,
both HBOT and hyperbaric pressure demonstrated
anti-inflammatory activity by inhibiting IFN-c re-
lease, whereas 100% oxygen at room air pressure
(1 atm) actually increased IFN-c release [128]. Fur-
ther study is needed to verify this finding, to deter-
mine if this phenomenon equally applies to the
other noted benefits of HBOT, to better understand
the mechanisms of action of HBOT, and to deter-
mine the optimal oxygen concentration for use in
autistic individuals.

HBOT session count considerations

The number of HBOT sessions needed to produce
full clinical improvements is unclear. In one study
combining the use of SPECT and HBOT, an average
of 70 treatments was needed to show a significant
increase in cerebral blood oxygenation and metab-
olism in patients with chronic neurological disor-
ders including CP, stroke, and traumatic brain
injury. Of note, the rate of improvement in cere-
bral blood oxygenation and metabolism was more
profound during the last 35 HBOT sessions when
compared to the first 35 [74]. In another study of
children with CP using HBOT at 1.7 atm, serial
functional measurements after 40 and 80 HBOT
sessions showed continuing objective improve-
ments including a decrease in the total time of cus-
todial care and improved gross motor function. At
the end of 80 treatments, children in the study
were continuing to improve, and the authors noted
that the optimal number of treatments could not
be determined as it appeared that further HBOT
sessions would yield additional improvements
[268]. Further study is needed to clarify the opti-
mal number of HBOT sessions for autistic
individuals.
Mitochondrial function fl ›
Neurotransmitter abnormalities › fl
Detoxification enzyme function fl ›
Dysbiosis › fl
Porphyrin production fl ›
Circulating stem cells ›
Pathophysiology as a primary acceptance
criterion for HBOT

HBOT has been used by the Navy since 1943 for air
embolism and decompression sickness, two indica-
tions that are widely accepted. However, no pro-
spective, double-blind, placebo-controlled trials
have been performed on these 2 indications;
rather, the use of HBOT is justified based upon
the underlying pathophysiology of these 2 condi-
tions and the mechanism of action of HBOT [68].
The use of HBOT for autism is considered ‘‘off-
label’’ [269]. However, examining the pathophysi-
ology of autism continues to indicate that HBOT
might be effective for treating autism [270]. Sev-
eral studies on the use of HBOT in autism are cur-
rently underway and early results are promising.
It is hoped that a clearer understanding of the po-
tential benefits of HBOT in treating the common
symptoms of autism will spur other researchers to
investigate the use of HBOT in autistic individuals.
Conclusions

Numerous studies of autistic individuals have re-
vealed evidence of cerebral hypoperfusion, neuro-
inflammation and gastrointestinal inflammation,
immune dysregulation, oxidative stress, relative
mitochondrial dysfunction, neurotransmitter
abnormalities, impaired detoxification of toxins,
dysbiosis, and impaired production of porphyrins.
HBOT has been shown to increase oxygen delivery
to hypoperfused or hypoxic tissues, decrease
inflammation and oxidative stress, and increase
the production of mitochondria and the number
of circulating stem cells. HBOT might also improve
the immune dysfunction, neurotransmitter abnor-
malities, and dysbiosis specifically found in autistic
individuals. Further studies are necessary to test
this hypothesis and are currently underway. The
possible effects of HBOT on autism are summarized
in Table 8.
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